Answer:
Step-by-step explanation:
[tex] \frac{ {5}^{m} }{ {5}^{ - 3} } = {5}^{5} [/tex]
[tex] {5}^{m - ( - 3)} = {5}^{5} [/tex]
[tex]m + 3 = 5[/tex]
[tex]m = 2[/tex]
Answer:
[tex] {5}^{m} \div {5}^{ (- 3)} = {5}^{5} \\ {5}^{m} \div \frac{1}{ {5}^{3} }= {5}^{5} \\ {5}^{m} \times {5}^{3} = {5}^{5} \\ {5}^{m} = \frac{ {5}^{5} }{ {5}^{3} } \\ {5}^{m} = {5}^{2} \\ \boxed{m = 2}[/tex]